Unramified Brauer groups of finite and infinite groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unramified Brauer Groups of Finite and Infinite Groups

The Bogomolov multiplier is a group theoretical invariant isomorphic to the unramified Brauer group of a given quotient space. We derive a homological version of the Bogomolov multiplier, prove a Hopf-type formula, find a five term exact sequence corresponding to this invariant, and describe the role of the Bogomolov multiplier in the theory of central extensions. A new description of the Bogom...

متن کامل

UNRAMIFIED BRAUER GROUPS OF FINITE SIMPLE GROUPS OF LIE TYPE Al FEDOR BOGOMOLOV, JORGE MACIEL, AND TIHOMIR PETROV

We study the subgroup B0(G) of H (G, Q/Z) consisting of all elements which have trivial restrictions to every Abelian subgroup of G. The group B0(G) serves as the simplest nontrivial obstruction to stable rationality of algebraic varieties V/G where V is a faithful complex linear representation of the group G. We prove that B0(G) is trivial for finite simple groups of Lie type Al.

متن کامل

On Fields with Finite Brauer Groups

Let K be a field of characteristic 6= 2, let Br(K)2 be the 2primary part of its Brauer group, and let GK(2) = Gal(K(2)/K) be the maximal pro-2 Galois group of K. We show that Br(k)2 is a finite elementary abelian 2-group (Z/2Z), r ∈ N, if and only if GK(2) is a free pro-2 product of a closed subgroup H which is generated by involutions and of a free pro-2 group. Thus, the fixed field of H in K(...

متن کامل

Brauer Groups

I define the Brauer group of a field k as similarity classes of central simple algebras over k. Then I introduce non-abelean cohomology and use it to prove that the Brauer group is isomorphic to a certain cohomology group. Brauer groups show up in global class field theory.

متن کامل

Strongly Bounded Groups and Infinite Powers of Finite Groups

We define a group as strongly bounded if every isometric action on a metric space has bounded orbits. This latter property is equivalent to the so-called uncountable strong cofinality, recently introduced by Bergman. Our main result is that G is strongly bounded when G is a finite, perfect group and I is any set. This strengthens a result of Koppelberg and Tits. We also prove that ω1-existentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2012

ISSN: 1080-6377

DOI: 10.1353/ajm.2012.0046